Relevance feedback algorithm based on learning from labeled and unlabeled data
نویسندگان
چکیده
Supervised learning algorithms (relevance feedback (RF) algorithms) are often used in content based image retrieval (CBIR) systems to enhance interactive search and browsing of image databases. One of the issues associated with RF based CBIR systems is the lack of a large training set. Labeling of images is a time consuming activity and user’s usually do not have the patience to label a large set. The challenge is to somehow leverage the much larger set of unlabeled images to improve the performance of CBIR systems. In this paper we propose a novel RF algorithm which learns from both labeled and unlabeled data. Our proposed algorithm also uses active learning so as to maximize the information gained from a given amount of user feedback.
منابع مشابه
Exploiting Unlabeled Data in Content-Based Image Retrieval
In this paper, the Ssair (Semi-Supervised Active Image Retrieval) approach, which attempts to exploit unlabeled data to improve the performance of content-based image retrieval (Cbir), is proposed. This approach combines the merits of semi-supervised learning and active learning. In detail, in each round of relevance feedback, two simple learners are trained from the labeled data, i.e. images f...
متن کاملImproving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images
In content-base image retrieval, relevance feedback (RF) schemes based on support vector machine (SVM) have been widely used to narrow the semantic gap between low-level visual features and high-level human perception. However, the performance of image retrieval with SVM active learning is known to be poor when the training data is insufficient. In this paper, the problem is solved by incorpora...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPositive and Unlabeled Examples Help Learning
In many learning problems, labeled examples are rare or expensive while numerous unlabeled and positive examples are available. However, most learning algorithms only use labeled examples. Thus we address the problem of learning with the help of positive and unlabeled data given a small number of labeled examples. We present both theoretical and empirical arguments showing that learning algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003